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Improved methods for initially loading particles in a magnetized simulation plasma with 
nonuniform density and temperature distributions are proposed. In the usual guiding center 
loading (GCL), a charge separation coming from finite Larmor radius effects remains because 

of the difference between the guiding center density and the actual density. The modified 
guiding center loading (MGCL) presented here eliminates the electric field so generated and 
can be used for arbitrary density and temperature profiles. Some applications of these 
methods to actual simulations are given for comparison. The significance of these methods of 
initial particle loadings is also discussed. 

1. INTRODUCTION 

With recent increases in simulation techniques and development of electronic 
computers with faster speeds and larger memories, particle simulation can now treat 
a rather large-scale plasma in a nonuniform system [ 11. However, initial particle 
loadings for a magnetized, nonuniform plasma have not been studied despite many 
works using such a plasma. 

The difftculty in specifying the initial conditions for a magnetized and nonuniform 
plasma exists because we cannot explicitly and directly give the actual density 
distribution. We can only assign the guiding center positions and velocities to 
simulation particles, following the prescribed equilibrium distribution. The actual 
positions of the particles are determined automatically by the guiding center positions 
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and velocities of their particles. The resultant actual density is generally different 
from the given guiding center density (see, e.g., [2]). If the charge neutrality condition 
for the guiding center densities is satisfied, which is commonly assumed in the theory 
and the simulation, then the charge separation for the actual densities remains 
because of the difference in the average Larmor radii for various particle species. This 
charge separation excites a large-scale electric field in the inhomogeneous direction, 
which gives rise to macroscopic plasma flow on the order of the diamagnetic velocity 
(see Eqs. (11) and (12)). Thus unwanted effects may be added to the phenomena we 
want to simulate by using the conventional initial condition. 

It is important in particle simulations to use initial loadings whch do not produce 
the charge separation if we intend to simulate a neutral plasma. The purpose of the 
present work is to propose new methods of initially loading particles that are 
applicable to a neutral plasma with arbitrary density and temperature profiles. Some 
applications to actual simulations are also given. 

2. MODIFIED GUIDING CENTER LOADING 

Let us consider an electrostatic plasma in a constant external magnetic field B, 
along the z-axis. We assume nonuniformity exists only in the x-direction (slab 
geometry). The extension to the case where a plasma is nonuniform in the xy-plane, 
however, is straightforward for the following discussion. As is well known, an 
equilibrium distribution f(x, v) with no drift velocity along the magnetic field is 
usually given by 

f(XT v> = wx + u4 
[ 

2nT(xm+ u ,a)] 3’2 exp[ - 2,xy; ,saJ ’ (1) 
4’ Y 

where m and R represent the mass and the cyclotron frequency, u = 1 v ], and N(x) and 
T(x) can be thought of the density and the temperature distributions of the guiding 
centers located at x, =x + uJJ~. It is to be noted that the actual particle density, 
n(x), is not equal to N(x) but is given by 

n(x) = I j-(x, v) dv, (2) 

because the actual position of a particle is separated from its guiding center by its 
Larmor radius. As discussed in the Introduction, the charge neutrality condition for a 
simulated plasma is not satisfied if the initial particle loading follows the usual 
condition, -qeN,(x) = qiNi(x), where N,(x) and q, represent the guiding center 
density and the charge for the species a (i = ion and e = electron). For simplicity we 
consider the two-species plasma. Note that the species indices are neglected in this 
paper, if possible. The initial particle loading for realizing this condition will be called 
the guiding center loading (GCL). It is necessary to determine the guiding center 
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density N,(x) in order for the actual charge neutrality, -q,n,(x) = qi ni(x), to be 
satisfied. 

Before describing methods free of the charge separation, let us derive an analytical 
relation between n(x) and N(x). Carrying out integrations with respect to V, and U, in 
Eq. (2) we obtain easily 

n(x) = f+m 
l/2 

W + v,lfQ 
m 

a ZnT(x+ v&q 1 [ exp - 
mv: 

n-(x + v,p> 1 dv,. 

(3) 

Assuming periodicity of N(x) and T(x) with period L, we can rewrite Eq. (3) in a 
Fourier series, 

n(k)=+-JL n(x) e - ikx dx, (4) 
0 

n(x) = C n(k) eikx, 
k 

(5) 

where k = 2nj/L and j is an integer. From Eqs. (3) and (4) n(k) is given by 

n(k) = + ‘. dx 
I/Z 

J J 
+ O” dv, N(x + ~$2) 

m 

0 -m 2nqx + v,/Q> 1 
2 

mvY 
I 

- ikx 

2qx + v,/q e ’ 

Now we carry out the integration with respect to v,, so that we have 

n(k) = k fL dx N(x) exp - & T(x) eCikr, 
‘0 1 

or 

n’(k) = k J L dx R(x) exp - i k2p2 F(x) e - ik.‘, 
0 1 

(6) 

(7) 

where n(x) = n,Z(x), N(x) = n,#(x), T(x) = TO F(x), and p = (7’,/m)“‘/IR 1. Here, n, 
and To are the average density and temperature, respectively, and p is the Larmor 
radius evaluated from To. The exponential term in Eq. (8) shows the finite Larmor 
radius effects which cause the difference between n(x) and N(x). 

We will discuss shortly the effects of using GCL. If the average Larmor radius is 
sufficiently less than the characteristic length of the plasma inhomogeneity. i.e., 
pdln(NT)ldx < 1, the actual density n(x) is approximately given by (from Eq. (8)) 

n(x) - N(x) = no $ -$ [ f(x) z%‘(x) 1. (9) 
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Hence, the following charge separation, 6Q(x) = qi n,(x) + qe n,(x), will result from 
GCL, 

~Q(x) N qi Hi0 $ $ [pi pi], (10) 

where we have assumed pe < pi. The electric field E, caused by the charge separation 
given by Eq. (10) yields a plasma flow, u,” = - cE,/BO, which is evaluated by the 
relation 

where Opi is the ion plasma frequency and the reduction of the electric field due to 
polarization effects of the plasma has been included by the factor (1 + ~iJQnf)-‘. On 
the other hand, the diamagnetic velocity for the species a is 

uD CT,,, 1 d 
- - - - r&(x> ~&)I* ay - q,B, &(x) dx (12) 

We see tat v,” and vfiDY are quantities of the same order for the usual parameters 
(n;/fx;i < 1). 

Now let us show how to determine m(x) so that the actual neutrality condition, 
-qene(x) = q,n,(x), is satisfied. We denote such m(x) by NM(x). Further, let s(x) 
represent the conventional guiding center density (-q,N,(x) = q,N,(x)). The methods 
of realizing N”(x) in particle simulations will be referred to as modified guiding 
center loadings (MGCL). 

If a plasma is uniform in temperature, Eq. (7) can be easily integrated to be 
n(k) = exp(-fk2p2) N(k). It is clear that if, instead of N(k), a modified guiding center 
distribution NM(k) is chosen as NM(k) = exp(ik2p2) N(k), i.e., 

NM(x) = C exp(+k2p2) N(k) eikx, 
k 

(13) 

the actual density n(x) becomes equal to N(x). Consequently charge neutrality can be 
fulfilled everywhere. It is to be noted that this method establishes the charge 
neutrality condition without the assumption p(d In n/dx)@ 1. We can construct an 
arbitrary density distribution as long as the right-hand side of Eq. (13) converges. 

If a plasma has a nonuniform temperature, the problem becomes more complicated 
because Eq. (8) becomes coupled equations for different k modes. Here we show two 
methods. With the first method we obtain m”(x) so that n”(x) = m(x). It is equivalent 
to solving the following equations for NM(k), 

R(k) = y Gk,,NM(k - q), 
q= -co 

= ,gm G,,,-,~“(q), (l“b) 
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where the GkVq’s are given by 

exp[-fk2p2F(x)] = 2 Gk,q exp(iqx). 
9 

(15) 

It is to be noted that the truncation for large q in Eq. (15) is not safely justified 
because, for kp 2 1, the q-spectrum band width of Gk,q is about (kp)2 times as broad 
as that of T(q). However, for (kp)2 pmin 9 l(0 < coin < l), where F,,,in is the minimal 
normalized temperature, Gk,q converges uniformly to zero for large k regardless of 
the value of q. Hence we can truncate Eq. (14b) for finte k and q; in general, fi”(q) 
can be obtained as a numerical solution of linear equations. 

The second method is simpler than the first, but, strictly speaking, it is only 
applicable to the simulation where the guiding center approximation is used for 
electron dynamics, i.e., n,(x) = N,(x) (full Lorentz force is used for ion dynamics). 
We first distribute ions in configuration space using GCL. The ion density 
distribution n,(x) is given by Eq. (8) or, expanding the exponential term in a Taylor 
series, 

zi(k) = exp(-ik2py) z (fkzi)” ~ ff,(kh 
n=O - 

H,(k) = + r ai(x)[ 1 - Fi(x)]” eeikx dx. (17) 

(16) 

The function H,(k) is obtained in order from H,(k) = Ni(k) and Ti(k) using the con- 
volution 

(18) 

where 6,,, is the Kronecker delta. The guiding center distribution of electrons is 
chosen as N:(x) = - qi/qeni(x), where n,(x) is the ion density obtained from Eqs. 
(16t( 18). It is clear that this method guarantees the charge neutrality condition for 
the simulation plasma we are considering. 

To end this section, we emphasize that we can simulate the neutral plasma which is 
nonuniform in both density and temperature without the assumption that the 
inhomogeneous scale of the plasma is much larger than the ion Larmor radius, by 
using one of the methods mentioned above. 

3. APPLICATIONS TO COMPUTER SIMULATIONS 

Here we present a few applications of MGCL to actual particle simulations. The 
results using GCL are also described to make clear the difference between the 
methods. 
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3.1. The Case of Nonuniform Density 

We first applied MGCL to the simulation of the drift wave instability driven by a 
density gradient. We used the electrostatic two-and-a-half-dimensional dipole 
expansion code [ 3 ] with a static magnetic field slightly tilted from the z-direction in 
the y-direction. The plasma is bounded by conducting walls at x = 0 and x = L, at 
which the electrostatic potential is zero. Method I of Ref. [4], which is guiet and 
produces no numerical surface instability, is used for particle reflection at the walls. 
Periodic boundary conditions are used in the y-direction. The density distribution is 
chosen as 

N(x) = 1 --E tanh[(x -x,)/l], (19) 

with E = 0.764, I = 7.64 and x,, = 32, where lengths are normalized by a grid spacing 
A. The plasma is uniform in temperature. The full dynamics of electrons and ions are 
followed. The parameters are: system size, L, x L, = 64 X 32; number of particles, 
N, = Ni = 16,384; particle size, a = 1.5; time step, w,,At = 0.4; mi/me = 25; 
fiRe/ope = 2; electron Debye length, lne = 2; T,/Ti = 4; angle between the magnetic 
field and the z-axis, B = 1.5’. 

Figure la shows the spatial profile of the k, = 0 mode of the electrostatic potential 
at mpe t = 58 before instability sets in. With GCL, a large k, = 0 mode appears as 
predicted in the previous section. Asymmetry in the potential profile comes from the 
difference in the reduction of the electric field due to polarization effects which are 
proportional to the density. The ratio of the maximum density to the minimum 
density is 7.47, which is consistent with asymmetry of the potential. On the other 
hand, with MGCL, the k, = 0 mode is almost eliminated. Figure lb shows the spatial 
profile of the ion flux. The solid curve represents the theoretical prediction for the 
diamagnetic flow with MGCL (see the Appendix), which is (quite accidentally) the 
same as the prediction of the local theory. The reduction of the ion flux measurement 
with GCL from the theory is mainly due to E x B drifts produced by the potential 
presented in Fig. la. With MGCL, the measured ion flux agrees very well with the 

:a) 

FIG. 1. Spatial profiles of (a) the electrostatic potential for the k,. = 0 mode and of (b) the ion flux 
in the y-direction. The density profile is given by Eq. (21). The solid curve in (b) represents the 
theoretical prediction for the diamagnetic flux with MGCL. 
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FIG. 2. Temporal evolution of the k,. = 271/L, mode of the density 

O<x<L,. 
perturbation, averaged cwer 

theoretical curve. Therefore, Fig. 1 shows that MGCL works satisfactorily, as we 
expected. 

In Fig. 2, we illustrate the temporal evolution of the k, = 271/L, mode of the 
density perturbation which is averaged over 0 < x <LX. This mode corresponds to 
the most unstable drift wave mode. An appreciable difference between the results with 
GCL and MGCL is clearly observed. An especially drastic change occurs in the 
nonlinear stage of the instability (wpe t 2 700). Figure 2 indicates the significance of 
properly treating the k, = 0 mode in the drift wave simulation as well as the impor- 
tance of the initial conditions. 

3.2. The Case of Nonuniform Temperature 

For the second example, we consider the temperature profile given by 

T(x) = 1 - E, CDS 
( J 

g (ET < 1). 

This example is of practical importance because it applies to the simulation of the 
anomalous heat diffusion phenomena due to convective modes or wave transport, etc. 
Here we use the first method described in Section 2 for the nonuniform temperature 
case. For this temperature profile, the matrix G,,, in Eq. (14) is expressed as 

Gk,Y = exp(--fk2p2) I,,($c,k’p’), (21) 

where k = 2nm/L, q = 2nn/L (m, n: integer) and I, is the modified Bessel function of 
the nth order. If the plasma density n(x) is uniform, Eq. (14b) reduces to the form 

a,,,., = I,(am’) + 2 [I,,-Jam*) + Im+,,(am2)1 NY Cm > 01, (22) 
II- I 

where Nr = NM(q) and a = $~-,.(2rc~/L)*; the relation NY = N”,, is assumed. The 
coefftcients NY are determined from the solution of Eq. (22). 
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This example was applied to the simulation with GCL and MGCL. We used a 
two-dimensional code with a static magnetic field in the z-direction. Periodic 
boundary conditions were used both in the x- and y-directions. Only electrons were 
followed; ions are assumed to be a charge neutralizing background. The parameters 
are: N, = 65,536; L, x L, = 64 x 64 (L, = L); a = 1.0; A.,, = 2.0; sT. = 0.5; 
SZe/upe = 0.5; upedf = 0.2. We get a = 3.855 X lo-* (41) for these parameters. The 
first mode, NY, is evaluated as 

NY = - Z,(a)/(Zo(a) + Z*(a)) = -;a = - 1.927 x lo-* 

in the first approximation and N,” (m > 2) is the higher order quantity of a. Therefore 
the only N, (=N-,) mode is sufficient to make the density uniform in the present 
simulation. (The N,‘s obtained from the numerical calculation of Eq. (22) are 
N, = - 1.924 x lo-*, N, = - 1.457 x 10-3, N, = - 3.008 x lop4 ,....) Namely, 
p(x) = 1 - a cos(27cx/L). Of course for a ‘v 1, it is possible to obtain NY strictly by 
the numerical calculation. 

Figure 3 shows the spatial profiles of the electrostatic potential (k, = 0 mode) and 
of the macroscopic velocity in the y-direction. With GCL, we see in Fig. 3a a 
sinusoidal potential being built up, the magnitude of which agrees very well with the 
prediction in Section 2. We also observe in Fig. 3b that, with GCL, the macroscopic 
velocity in the y-direction is reduced by a factor of 2 from the theoretical curve for 
the diamagnetic velocity given by the local theory. This is because the E X B drift 
velocity caused by the potential shown in Fig. 3a is in the direction opposite to that 
of the diamagnetic velocity. The reduction factor is consistent with the estimate in 
Section 2. However, we detect no appreciable potential using MGCL (Fig. 3a), and 
hence the macroscopic velocity in Fig. 3b almost agrees with the theoretical curve. 
We can conclude that MGCL works satisfactorily, as we had expected. This method 
has been used in simulations to study cross-field heat transport due to convective cell 
modes [S] and high frequency waves [6]. 

:a) r b, 

02 . GCL 
’ MGCL 

0 32 0 32 64 
X 

FIG. 3. Spatial profiles of (a) the electrostatic potential for the k,= 0 mode and of (b) the 
macroscopic electron velocity in the y-direction, for the case of a single sinusoidal temperature profile. A 
solid curve represents the prediction of the local theory. 



INITIAL PARTICLE LOADINGS 213 

The extension of MGCL to the more general case, in which gradients exist both in 
the x- and y-directions, is quite straightforward. For example, when the temperature 
profile is uniform, the modified guiding center distribution N”(x, y) is given by 

ivyx, y) = “ 
h,.k,. 

exp[+p’(ki + k:)] N(k,, ky)eih~~x+ihJy, (23) 

where k, = 2nm/L, and k, = 2nn/L, (m, n: integers). The other generalization is to 
the case where there is magnetic shear in the x-direction. If the magnetic field is 
expressed as B = (0, B,(x), B,) ( usually B,,(X) is taken to be Box/L,, where L, is the 
shear length), the situation is simple because the canonical momentum in the y- 
direction is conserved. Equation (1) gives the equilibrium distribution even in this 
case (n = n(x); T = T(x)). Then MGCL can be used without any change. For 
magnetic shear of the type B = (0, B,(r), B,) in the cylindrical coordinates, with the 
assumption that n = n(r) and T = T(r), the same argument prevails because the 
canonical angular momentum P, is conserved. MGCL can be also applied to this 
case without any change by transforming the results from Cartesian coordinates to 
cylindrical coordinates. Initial particle loading schemes which do not yield a charge 
separation for more complicated geometries of the magnetic field, including 
toroidicity, will be a future problem. 

APPENDIX : DERIVATION OF u,(x) 

The flux density is determined as 

where f(x, v) is given by Eq. (1) and T,(x) = T,(x) = 0. Following the method 
described in Section 2, we obtain 

noTo L T,(k) = ik mn 
1 

dx F(x) m(x) exp(-ik*p*T(x) - ikx). 
0 

642) 

For the case of F(x) = 1, Eq. (A2) reduces to 

T,(k) = ik 2 exp(-jk*p*) N(k). 
0 

Carrying out the inverse transformation we have for the diamagnetic velocity, 

u).(x) = T,(x) CT, 1 h(x) -- 
n(x) =qB, n(x) dx ’ 644) 
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where n(x) is the actual density. With MGCL, N(k) is replaced by NM(k) = 
exp(fk2p2) N(k); hence n(k) = N(k) and we have 

UJX) = 3 - -* 1 dfv(x) 
44, N(x) dx 645) 

This expression is the same as that given by the local theory where the approximation 
pO/L, < 1 (L;’ = d In n(x)/dx) is used. When T(x) is not constant, we cannot obtain 
such a simple and exact relation as Eq. (A5). 
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